Generation of the Ford Sequence of Length 2",n Large

H. Fredricksen

Communications Systems Research Section

This article presents three algorithms for forming the Ford sequence of length
2" and compares the storage requirements for each of the three. These sequences
are used in checkout of digital communications equipment,

l. Introduction

Shift register sequences have had application in code
generation, prescribed period sequence generation for
countdown circuits, and PN shift register sequences have
been used for recovering signals from noise in deep space
transmissions.

A special sequence period for a shift register of n stages
is the deBruijn sequence of length 2. In the deBruijn
sequence all 2" possible n-tuples occur once as n succes-
sive bits of the cyclic shift of the sequence of length 2.
These sequences have been used in forming comma-free
codes of higher index, as random bit generators when all
2" possible subsequences of length n are required, and as
a test sequence to map through all 27 states of a Viterbi
convolutional decoder.

The method most often used to find a deBruijn sequence
of length 2" is to find a primitive polynomial of degree n
over GF[2]. When the primitive polynomial is wired
into a shift register, a sequence of length 2" — 1 is formed,
if care is taken to avoid the all-zero cycle of length 1. An
extra logical expression is then required to “add” the zero
sequence into the PN sequence to form the deBruijn
sequence of length 2~

There are ¢ (2* — 1)/n primitive polynomials of de-

84

gree n. But since there are 2**~'- deBruijn sequences of
length 2", we see the “linear” deBruijn sequences form a
vanishingly small fraction of all deBruijn sequences. Also
to find a primitive polynomial of high degree is not neces-
sarily an easy task.

Unfortunately, to generate a nonlinear deBruijn se-
quence is not generally easy either. There is an algorithm,
which we attribute to Ford (Ref. 1) which yields a non-
linear deBruijn sequence. In Ref. 2 the Ford algorithm is
investigated and the positions of the truth table for its
generation are determined. The algorithms for the Ford
sequence generation are given below.

However, to form the Ford sequence using Ford’s orig-
inal algorithm or the algorithm for the truth table
requires 2* bits of storage in the first case, or (n—1)
X (Z (n) — 1) bits of storage in the second, where Z (n) — 1
is the number of positions which are equal to 1 in the
truth table generation and Z (n) is given by

Zo) =13 p(d) 2
n d/n
We give a new algorithm below which yields the Ford
sequence and requires no storage beyond two holding
registers of length n bits. The algorithm is valid even for
very large n.

JPL TECHNICAL REPORT 32-1526, VOL. IV

Il. Algorithms for Generation of Ford Sequence

Ford’s Algorithm. Let x, =x, = - -+ = x,., = 0. The
xn.ith bit is a 1 if the n-tuple %z, X2 * ° * Xx+n-1 1 has
not occurred previously in the sequence, otherwise it
is a 0.

Proof of Ford’s Algorithm. The process must terminate
at 1000 - - - O for if it terminates at yo, Y1, * * * ,Yn-1 57
10 - - - 0, then y, * - * y,_, must have occurred at least
twice in the sequence, which is not permitted. Also every
n-tuple must be on the sequence for if z, * - * z,-; is not
on the sequence then neither is one of its possible suc-
cessors, in particular z, - - - z,-, 0. Continuing we see
Zy * * * Zpr 0 0 is not on the sequence, and finally we
find that 100 - - - 0 is not on the sequence.

We now present the algorithm which determines the
truth table for the Ford sequence.

Algorithm 1

(1) Form the pure cycle decomposition of the deBruijn
graph, i.e., choose all cycles of length £, {|n.

(2) For each cycle (excepting (0)), find the maximum
element, m; = 2”’(,;, k; Odd, T; =(.

Algorithm 1 yields Z (n) — 1 positions «; which are the
positions which are 1 in the truth table, where Z (n) is the
number of cycles of length £, #|n.

Verification of Algorithm 1 is given in Ref. 2. Ford’s
algorithm requires the whole sequence be saved for the
generation and Algorithm 1 requires the saving of the
positions 0, y1, - * * ,yx»-1 which will take the 1 successor

yl: T :yn—b 1'

We now give an algorithm to produce the Ford se-
quence for large n. The algorithm is similar to Algorithm 1.

Algorithm 2 will produce the next n-tuple of the Ford
sequence from the current n-tuple.

Algorithm 2

(1) Bo=(0, 0, 0, - - -, 0), the starting n-tuple of all
zeros. (From B; = (b, bs, * + + , bs), we produce
Bi+1 = (b2> b:b T ;bn+1)>-

(2) Form B = (bz, bs, = * * , ba, 1).

(3) Consider all cyclic shifts of g% to find the maximum
element M; on the cycle

“M,=(i " bp1;b; - - bi_y)
(4) If bg = b3 = = bi—l = 0, then
Bi+1 = (bZ’ bS) T :bm_b.l)

otherwise Bi.1 = (bz, * * * , ba, by).

Proof
Algorithm 2 follows easily from Algorithm 1. If
b2=b3="':bi_1:0

then the maximum element on one of the pure cycles in
Algorithm 1 is

m; = 9i- [1+ 3 bujn 2,-]

=1
and

n-i+1
1+ 3 buju 2 =k; of Algorithm 1

j=1

i bn-ji1 2! = a; of Algorithm 1

i=0

Algorithm 2 requires saving only the present state 8; and
the current largest value of the shift of the vector g%.

References

1. Ford, L. R, Jr., A Cyclic Arrangement of M-tuples, Report No. P-1071. Rand
Corp., Santa Monica, Calif., Apr. 23, 1957.

2. Fredricksen, H., “The Lexicographically Least deBruijn Cycle,” Journal of
Combinatorial Theory, Vol. 9, No. 1, pp. 1-5, July 1970.

JPL TECHNICAL REPORT 32-1526, VOL. IV

85

